

Year 11 Mathematics Specialist Test 6 2016

Calculator Free Mathematical induction and complex numbers

STUDENT'S NAME

DATE:

TIME: 50 minutes

MARKS: 51

INSTRUCTIONS:

Standard Items: Special Items: Pens, pencils, ruler, eraser. Formula sheet

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

1. (5 marks)

If $(a + bi)^2 = 3 + 4i$, where *a* and *b* are real numbers, determine the values of *a* and *b*.

2. (3 marks)

Determine the quadratic equation whose roots are 1 + 5i and 1 - 5i.

3. (4 marks)

One root of the equation $z^2 + az + b = 0$, where *a* and *b* are real constants, is 2 + 3i. Determine the values of *a* and *b*.

4. (6 marks)

The complex number *z* satisfies $\frac{z}{z+2} = 2 - i$. Determine the real and imaginary parts of *z*. (Hint: let z = a + bi).

5. (9 marks)

Simplify the following complex expressions leaving your answer in the form a + bi

(a)
$$2-i-(-3+2i)$$
 [1]

(b)
$$(3-2i)(-2+5i)$$
 [2]

(c)
$$\frac{-3-i}{2+3i}$$
 [4]

(d)
$$\frac{i}{-i^3}$$

[2]

6. (5 marks)

Using the principle of mathematical induction prove

 $2^{0} + 2^{1} + 2^{2} + \dots + \dots 2^{n} = 2^{n+1} - 1$ for $n \ge 0$

7. (6 marks)

Using the principle of mathematical induction prove that $9^n - 2^n$ is divisible by seven for $n \in \mathbb{Z}^+$

8. (7 marks)

Prove
$$\begin{bmatrix} -2 & 9 \\ -1 & 4 \end{bmatrix}^n = \begin{bmatrix} -3n+1 & 9n \\ -n & 3n+1 \end{bmatrix}$$
 for $n \ge 1$ using mathematical induction

9. (6 marks)

Prove that $\cos x + \cos 3x + \cos 5x + \dots + \cos [(2n-1)x] = \frac{\sin 2nx}{2\sin x}$ for $n \in \mathbb{Z}^+$